正常的胎儿脂肪组织(AT)发育对于围产期健康至关重要。在或简单地脂肪以脂质形式存储能量。营养不良可能导致过度或耗尽的肥胖。尽管以前的研究表明,AT和围产期结局的量之间存在相关性,但缺乏定量方法,对AT的产前评估受到限制。使用磁共振成像(MRI),可以从两个点Dixon图像中获得整个胎儿的3D脂肪和纯水图像,以在脂质定量时启用。本文是第一个提出一种基于Dixon MRI的胎儿脂肪分割的深度学习方法的方法。它优化了放射科医生的手动胎儿脂肪描述时间,以生成带注释的培训数据集。它由两个步骤组成:1)基于模型的半自动胎儿脂肪分割,由放射科医生进行了审查和纠正; 2)使用在所得的注释数据集中训练的DL网络的自动胎儿脂肪分割。培训了三个DL网络。与手动分割相比,我们显示出分割时间(3:38小时至<1小时)和观察者变异性(0.738至0.906)的显着改善。用3D残差U-NET,NN-UNET和SWIN-UNETR TRONSERTER网络对24个测试用例进行自动分割,平均骰子得分分别为0.863、0.787和0.856。这些结果比手动观察者的变异性更好,并且与自动成人和小儿脂肪分割相当。一名放射科医生审查并纠正了六个新的独立案例,并使用最佳性能网络进行了细分,导致骰子得分为0.961,校正时间显着减少了15:20分钟。使用这些新颖的分割方法和短暂的MRI获取时间,可以在临床和大型果园研究中量化全身皮下脂质的单个胎儿。
translated by 谷歌翻译
MRI中胎儿结构的体积测量很耗时,并且容易发生错误,因此需要自动分割。由于胎盘模糊边界和胎儿脑皮层复杂的褶皱,胎盘分割和准确的胎儿脑分割进行回旋评估特别具有挑战性。在本文中,我们研究了对问题的轮廓骰子损失的使用,并将其与其他边界损失以及联合骰子和横向内向损失进行比较。通过侵蚀,扩张和XOR操作员有效地计算出每个切片的损失。我们描述了类似于轮廓骰子指标的损失的新公式。骰子损失和轮廓骰子的组合为胎盘分割提供了最佳性能。对于胎儿脑部分割,最佳性能的损失是结合骰子丢失,随后是骰子和轮廓骰子损失的骰子,其性能比其他边界损失更好。
translated by 谷歌翻译
深度学习方法已被证明可以有效地分割医学成像中的结构和病理。但是,它们需要大量注释的数据集,其手动分割是一项繁琐且耗时的任务,尤其是对于大型结构。我们提出了一种新的部分注释方法,该方法使用每次扫描中的一小部分连续注释切片,其注释工作仅等于很少的注释情况。通过仅使用带注释的块进行部分注释的培训,将有关切片的信息包含在感兴趣的结构之外,并修改批处理损失函数以仅考虑带注释的切片。为了促进低数据制度中的培训,我们使用两步优化过程。我们用两个MRI序列Trufi和Fiesta用流行的软骰子损失测试了该方法,并将完整的注释状态与部分注释与类似的注释工作进行了比较。对于TRUFI数据,与完整注释相比,部分注释的使用平均表现稍好一些,骰子得分从0.936增加到0.942,并且骰子的标准偏差(STD)大幅下降22%,平均对称表面距离(ASSD)提高15%。对于嘉年华的序列,部分注释还会在分布数据中分别降低骰子分数和ASSD指标的STD和ASSD指标分别降低27.5%和33%骰子得分从0.84到0.9,从7.46降低到4.01毫米。两步优化过程有助于部分注释分别分配和分布数据。因此,建议使用两步优化器的部分注释方法在低数据制度下改善分割性能。
translated by 谷歌翻译
Deep active learning aims to reduce the annotation cost for the training of deep models, which is notoriously data-hungry. Until recently, deep active learning methods were ineffectual in the low-budget regime, where only a small number of examples are annotated. The situation has been alleviated by recent advances in representation and self-supervised learning, which impart the geometry of the data representation with rich information about the points. Taking advantage of this progress, we study the problem of subset selection for annotation through a "covering" lens, proposing ProbCover - a new active learning algorithm for the low budget regime, which seeks to maximize Probability Coverage. We then describe a dual way to view the proposed formulation, from which one can derive strategies suitable for the high budget regime of active learning, related to existing methods like Coreset. We conclude with extensive experiments, evaluating ProbCover in the low-budget regime. We show that our principled active learning strategy improves the state-of-the-art in the low-budget regime in several image recognition benchmarks. This method is especially beneficial in the semi-supervised setting, allowing state-of-the-art semi-supervised methods to match the performance of fully supervised methods, while using much fewer labels nonetheless. Code is available at https://github.com/avihu111/TypiClust.
translated by 谷歌翻译
在研究积极的学习时,我们专注于标记的示例数量(预算规模)和合适的查询策略之间的关系。我们的理论分析表明,一种让人联想到相变的行为:预算低时最好查询典型的示例,而预算较大时最好查询无代表性的示例。合并的证据表明,类似的现象发生在共同的分类模型中。因此,我们提出了典型lust,这是一种适合低预算的深度积极学习策略。在对监督学习的比较实证研究中,使用各种架构和图像数据集,TypicLust在低预算制度中的所有其他活跃学习策略都优于所有其他活跃的学习策略。在半监督框架中使用TypicLust,性能得到更加显着的提升。特别是,在CIFAR-10上训练的最新半监督方法,由Typiclust选择的10个标记的示例训练,达到93.2%的精度 - 比随机选择提高了39.4%。代码可在https://github.com/avihu111/typiclust上找到。
translated by 谷歌翻译
最近的工作表明,不同体系结构的卷积神经网络学会按照相同的顺序对图像进行分类。为了理解这种现象,我们重新审视了过度参数的深度线性网络模型。我们的分析表明,当隐藏层足够宽时,该模型参数的收敛速率沿数据的较大主组件的方向呈指数级数,该方向由由相应的奇异值控制的速率。我们称这种收敛模式主成分偏差(PC偏置)。从经验上讲,我们展示了PC偏差如何简化线性和非线性网络的学习顺序,在学习的早期阶段更为突出。然后,我们将结果与简单性偏见进行比较,表明可以独立看到这两个偏见,并以不同的方式影响学习顺序。最后,我们讨论了PC偏差如何解释早期停止及其与PCA的联系的一些好处,以及为什么深网与随机标签更慢地收敛。
translated by 谷歌翻译